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Intermittency in the presence of noise 

J-P Eckmann, L Thomas? and P Wittwer 
Departement de Physique ThCorique, Universitt de Geneve, 121 1 Geneve 4, Switzerland 

Received 30 April 1981 

Abstract. We analyse iterations of maps on an interval with an added noise term, in the 
neighbourhood of an intermittency threshold. We rigorously derive a universal scaling 
function for the laminar time expressed as a function of the distance from the threshold and 
the variance of the noise. 

1. Introduction 

Discrete dynamical systems, i.e. iterations of the form x,+~ =f(x,), are a subject of 
intense study, by mathematicians and physicists alike. The reasons for interest in these 
systems include the following. 

(i) They model various continuous evolution equations of physics, e.g. Hamilton’s 
equations, equations of hydrodynamics. (A connection between discrete dynamical 
systems and continuous evolution equations such as the Navier-Stokes equations can, 
at least partially, be established through the use of PoincarC sections (cf Abraham and 
Marsden 1978).) 

(ii) They can exhibit apparent chaotic behaviour, which bears on questions of 
instability (e.g. hydrodynamic instabilities and (weak) turbulence in fluids). 

(iii) They are amenable to numerical study. 
Since some of the equations of physics, such as Navier-Stokes, are of a 

phenomenological nature, neglecting e.g. quantum mechanical effects and the size of 
molecules, doubts have been raised as to whether the beautiful structures such as 
strange attractors survive the addition of noise terms to the deterministic equations. 
Surprisingly, the answer is yes for Axiom A attractors (Kifer 1974). These attractors 
have a strong hyperbolic structure, i.e. nearby points evolve in exponentially diverging 
or converging orbits. 

In this paper, we consider a general class of one-dimensional discrete dynamical 
systems, which have deterministic part depending on a parameter E ,  and which are 
perturbed by a noise of mean zero and standard deviation proportional to a parameter 
v, i.e. 

x n + 1  = f e ( x n ) + &  (1.1) 

with the {&} independent identically distributed random variables. In particular, we 
analyse the situation in which a stable and an unstable fixed point of the deterministic 
part collide as E varies. The situation differs from the one considered by Kifer; here, the 
linearisation of the deterministic part has eigenvalue 1 so that the evolution of 
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neighbouring points is governed by higher-order corrections. In this situation, we show 
that the noise does influence the behaviour of the system, and we give quantitative 
results (scaling law in E ,  a)  for the invariant measure of the process. 

To clarify the situation envisaged, consider the family of maps fE : [- 1, 11 + [- 1, 11 
defined by 

and 

g, (x) = x + $x + E .  

For E = 0, the graph of fE is illustrated below. 

-1 

Figure 1. Graph of f e ( x ) ,  with E = 0. 

For E = 0, x = 0 is a (one-sided) stable fixed point, and almost every initial point x,, will 
be attracted to 0, i.e. f:(xo) = 0 where f : ( x )  =f€(f:-’(x)), n > 1. When E < O  
the curve in figure 1 moves downward and fE has a stable and an unstable fixed point 
close to zero. When E > 0 an interesting situation arises for a typical initial point xo, as 
can be seen from figure 2. 

Near x = 0 the motion is calm, laminar, but away from it there are bursts of turbulent 
behaviour. This observation was systematically analysed by Pomeau and Manneville 
(1980), who also showed that similar behaviour can be traced to the same causes for the 
Lorenz system (1963), showing thus the relevance of the problem for more realistic 
dynamical equations. In addition they argued that the mean duration of the laminar 
phase is O(E-’”) ,  while the duration of the bursts is of mean length which is essentially 
independent of E for E near zero. In this paper, we study and solve the associated 
problem in which the deterministic evolution is perturbed by a noise term (cf equation 

We fix a small interval [-a, a ]  around x = 0 and call the motion in [-a, a ]  laminar. 
The principal object of interest is the expected duration of the laminar phase, 

(1.1)). 
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Figure 2. Successive laminar and burst motion for e 5 0 The horizontal axis represents the 
number of iterations, the vertical axis represents the interval [-1, 11 The interval [-7/64, 
7/64] is the laminar region 

T(E, a, K), for a ‘noisy’ map of the form fE(x) = x + KX’ + E + O(x3) + a[, K > 0, in a 
neighbourhood of this interval. Our main result, holding for a typical family of maps, is 
the following (we discuss typicality below and in § 4). 

Theorem 1 . 1 .  There are universal functions 8, such that for all typical families of maps 
as above and a sufficiently small, the laminar time satisfies 

(1.3) 

with a’= (a//l~i~’~) e ~ p ( ~ ’ ) ~ ’ ’ ~ ’ ’ ~  (i corresponding to sign E).  The functions U, are 
given by 

We now briefly describe the main line of reasoning. (Since K is held fixed, we omit 
the K dependence in our formulae.) In 8 2 we define T(E, a)  in terms of an integral, with 
integrand T,(x, E, a)p(x)  where T,(x, E, a)  is the expected escape time (number of 
iterations) from [-a, a], assuming that the particle starts at x E [-a, a ]  at time zero, and 
where p(x) dx, the reinjection density, is the probability to enter [-a, a] in [x, x +dx] 
from the outside burst region. Since we condition the state space [- 1, 11 by identifying 
all points in the burst region, the resulting process is no longer Markovian; we find it 
convenient to regard the resulting process as a semi-Markov process, the relevant facts 
of which are outlined in the next section. 

In order to obtain an explicit approximate expression for T,(x, E, a) ,  it is at first sight 
natural to approximate the discrete time process equation (1.1) by a continuous time 
diffusion governed by the Langevin equation 

(1.5) dx = ( K X ’ + E )  d t + 6  dw. 
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Here, w is the standard Wiener process with c? chosen appropriately so that the solution 
x ( t ,  xo) to this equation, evaluated at integer times t = 0, 1, 2, . . . , approximates the 
solution to equation (1.1). One could hope that T,(x,  E ,  a)  is given approximately by an 
analogously defined expected escape time -ro(x, E, a)  for equation (1.5). The time 
T’ (x ,  E, a)  itself is the solution to a second-order ordinary differential equation in x 
which can be solved by quadrature. Note, moreover, that under the transformation 

1’2 I E I - ~ ’ ~ X ,  t ’ =  K ~ ” ) E / ’ ’ ~ ~ ,  w‘= K ’ ’ ~ ~ E / ~ ’ ~ W  (recall (dw)2=dt) ,  equation (1.5) 
becomes 

= 

dx‘=  ( x ” i 1 )  dt ’+a‘dw‘ ,  

with a’ as in equation (1.3); this observation provides an intuitive explanation for the 
a / ~ l - ~ ’ ~  scaling we find for T(E ,  a) .  

The difficulty with the above reasoning would be to justify rigorously the replace- 
ment of equation (1.1) by (1.5), and so we do not proceed in this manner. Rather, in § 3, 
we obtain an integral equation for -r,(x, E, a)  and then show directly that T O  defined 
above, plus corrections of higher order in E - a4’3, satisfies this integral equation; -ro 
therefore contains the leading singular behaviour of 7,. 

It should be noted that the critical behaviour of T,(x,  E, a),  E, a+O, accounts 
entirely for the critical behaviour of T(E ,  a)  since p ( x ) ,  the reinjection density, which 
also depends on E ,  a, is assumed to be a non-atomic measure density, continuous in E ,  a 
at E ,  a = 0. It is this assumption that defines ‘typical’. Section 4 contains a discussion of 
this assumption. 

A final section (§ 5 )  is devoted to the description of a numerical test of our theory for 
the particular family of maps f e  defined in equation (1.2), with the 5, uniformly 
dsitributed in [-4, i]. 

2. Invariant measure for the dynamical system 

As described in the Introduction, the state space for the process we consider consists of 
the ‘laminar region, i.e. an interval [-a, a] around the contact point, and the burst 
region, i.e. the complement of [-a, a ]  in which all points are identified. (The points of 
the burst region are identified in order to achieve some universality of our statements- 
we are not interested in the detailed behaviour of the process in this region.) In the 
following, x denotes a point in [-a, a], b the burst region. The resulting conditioned 
dynamics are modelled as a semi-Markov process (Feller 1964), one in which the 
sojourn time in a state depends on the next state to which the particle jumps. 

Let Fxb(t) be the probability that a sojourn in the laminar region ends with a jump to 
the burst region before t + s, given that the laminar region was entered at x at time s, s 
arbitrary. Similarly let Fbx(t) dx be the probability of a burst ending before t + s with a 
jump to [ x ,  x +dx], assuming that the burst started at time s, s arbitrary. See figure 3 
below. (In the next section we derive models for Fxbr Fbx.) 
The principal task of this section is to derive an integral equation for the invariant 
measure v of this process. In fact this has been done already (see Feller 1964), but for 
the convenience of the reader we include the derivation here. 

To simplify notation, we consider a problem with discrete states, i, j ,  . . . instead of 
the continuum of states {x} and b ;  at the end of the section we write out the integral 
equation for the case at hand. Let Fi j ( t ) ,  i # j ,  be the probability that a sojourn at state i 
ends by a jump to j before time t + s, assuming i was entered at time s, s arbitrary. Let 
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Figure 3. The semi-Markov process. 

Pi j ( t )  be the probability of being at j at time t + s, assuming that i was entered at time s, s 
arbitrary. The backward equation for Pi j ( t )  is given by 

(Note that discrete time processes as well as continuous time processes are included in 
this analysis.) 

An integral equation for the invariant measure v can be extracted from the 
corresponding forward equation. It is, however, not immediate to obtain the forward 
equation directly from equation (2.1); rather, we proceed through Laplace transforms. 
Set 

. r r i j (A)  = e-^'Pij(t) dt, I:' 
r m  

Oij(A) = J e-" dFj j ( t ) ,  
0 

k # i  k # i  

Then equation (2.1) becomes, using matrix notation, 

T ( A )  = r(A) + @ ( A )  T ( A ) ,  

from which it follows that 

T ( A )  = r ( h )  + T(A)(l/r(A))@(A)T(A). 

This latter equation is the Laplace transform of the forward equation. 
The invariant measure U is given by the Abelian limit, 

uj = lim Pij(t) = lim A J e-*'Pij(t) dt  = lim A r i j ( A ) ,  
t-m h+O 0 h -to 

(2.3) 

(2.7) 

Applying this relation to equation (2.6), we obtain the desired integral equation for U, 

where 
r m  , -00 
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is the expected sojourn time at i, and 

(2.10) 

is the probability that a sojourn at i terminates by a jump to j .  

that T ~ ( x ) ,  the expected time to escape from the laminar region, is given by 
Returning to the problem at hand and suppressing the E ,  (r dependence, we have 

Ta(x) = dF.b(f) ,  lom 
whereas the expected sojourn time Tb in the burst region is 

T b  = dx [om t dFb, ( t ) .  

(2.11) 

(2.12) 

The re-entry density p(x) dx, i.e. the probability density for the burst ending with a 
jump to [x, x i-dx], is 

(2.13) 

Combining these quantities with the continuous analogue of equation (2.8), we obtain 
the equation for the invariant measure, 

In particular, the ratio R of the laminar time to the burst time is 

R - m  -1 
- T b  1, Ta(x)p(x) dx. 

vb 

(2.14) 

(2.15) 

It is this quantity which we study numerically (0 5) .  The behaviour of the integral in 
equation (2.15), E - u ~ ’ ~ - + O ,  is precisely the content of theorem 1.1. 

3. Expected laminar time 

Consider the discrete process 

X n + l  = X, + KX: + E $- U[,, (3.1) 

where the {t,} are mean zero, bounded, independent, ideqtically distributed random 
variables with common density dp .  Denote the solution to this equation starting at xO 
by xn(xo, w )  where w is a sample path. Let 7,(xo, w )  be the escape time, starting at xo, 
defined by 

v,(xo, U )  = min{nlxn(xo, w )  > c). (3.2) 

The expected value of q,, which we write as T,(x) = T, (x ,  E ,  a) ,  is given by 
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where 1 is the function which is identically 1 and S,  is the integral operator, acting on 
continuous functions defined on (-CO, c], defined by 

f (x  + Kx2 + E + at) d p  ( 6 ) .  (3.5) 
x + K x 2 + e + L 7 ~ a c  

Combining equations (3.3) and (3.4), we obtain the integral equation 

(U-SC)TC(X) = 1, x c, (3.6) 

var q,(x) = (U + s,)(n - s , ) ~ ~ T , ( x )  - (T,(x))'. (3.7) 

for ~ ~ ( x ) .  Equation (3.4) can be used further to show for example that 

The expected laminar time starting at x E [-a, a] is T,(x). (Because of the deter- 
ministic part of equation (3. l), escapes through the left boundary of the laminar interval 
are impossible for E ,  a sufficiently small.) The principal result of this section is to give an 
approximation to T ~ ( x ) ,  i.e. an approximate solution to equation (3.6) with c = a. 

Theorem 3.1. Let u / / E ~ ~ ' ~  be held constant. Then 

T,(X, E ,  a)=  To(X,  E ,  U)+O(IE/--2's) 

where 

with 6' = a2 exp(5') and 

h(x) = h,,&(x) = ( 2 / a 2 ) ( ~ x 3 / 3  + EX). 

(3.8) 

(3.9) 

(3.10) 

The quantity T()(x, E ,  a) is of order 1 ~ 1 ~ ' ' ~  and hence gives the leading-order singular 
behaviour of T, (x ,  E ,  a) for E .+ 0. 

Remarks. As discussed in the Introduction, T' is the expected time to escape (actually 
to +CO) for a particle diffusing according to the continuous time Langevin equation 
(1.5). If ~ ' ( x ,  w )  denotes the escape time, starting at x, the probability that q'(x, . )  
exceeds t is given by 

~ ( q " ( x ,  . )> t )=eGt1 (x ) ,  (3.11) 

where G is the differential operator 

G = $6' d2/dx2 + (KX'  + E )  d/dx (3.12) 

with the Dirichlet boundary condition imposed at +CO. Using equation (3.11) one finds 
that T ' ( x )  = exp(q'(x, s)) satisfies 

GT'(x) = -1; (3.13) 

cf equations (3.3) and (3.6). Equation (3.13) is easily integrated to yield (3.9) (cf Feller 
1966). 
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Proof. Set 6 =&,and define C ( E )  = ( E / ' .  For x E [-a, - c ( E ) ] ,  the expected time to reach 
- c ( E )  starting at x can be estimated from the deterministic part of equation (3.1), since 
for x in this interval the a( part is negligible with respect to the deterministic part. This 
time is certainly bounded by x + C ( E )  divided by the minimal step which is O()E  I")), from 
which one finds the estimate 0 < T,(x) - T ~ [ - c ( E ) ]  = O ( / E ( ~ ' ~ ) .  Similarly, for x E 

[ c ( E ) ,  a ] ,  one finds 0 4  T , ( x )  s T , [ C ( E ) ]  = O ( I E I - ~ ~ ) .  As can be seen from detailed 
estimates on 7' which we give below, the above inequalities hold with 7, replaced by 7'. 

Thus for 1x1 > c ( E ) ,  

~ ~ a ( X ) - ~ ' ( x ) /  

IT,[ * C ( E ) ] - 7 ' [ *  C ( E ) ] I  + ( T a ( X ) - T , [  f C ( E ) ] (  + / T ' ( X ) - T ' [ *  C ( E ) l l  

= IT,[ * C ( E ) ] - T ' [  * C ( E ) ] J  + O ( I E / - 2 S ) ;  

hence it  suffices to prove equation (3.8) for I x l G c ( e ) .  Moreover T,(x)= 

T ~ ( ~ ) ( x )  + T , [ c ( E ) ]  +0( 1) = T ~ ( ~ ) ( x )  + O ( / E ~ ~ ~ ' ) ) .  Thus, it suffices to prove /T~(~)(x) - 
~ ' ( x ) l =  O ( / E ) - " ~ )  for 1x1 s c ( E ) ,  where, again, T ~ ( ~ )  is the solution to equation (3.6) with 
c = C ( E ) .  

Recall c ( E ) =  ) E I " ~ ' .  Define I ~ ( E ) = { X I ( X ( < ~ ) E ~ ~ ' ~ } ,  I R ( E ) = { x / / E ~ ~ ' ~ < x ~ c ( E ) } ,  
I L ( & )  ={xi - C ( E )  4 x < - ) E ( ~ ' ~ } ,  The proof proceeds by considering Tc(Ej(x) ,  ~ ' ( x )  for x 
in each of these intervals. 

Lemma 3.2. For all x E [w, T ' ( x )  satisfies the estimates 

d"(7°(x))/dx" = O ( I E I - ( " + ~ ) / ~  1, n = 0, 1, 2 ,  3. (3.14) 

Proof. By means of the substitution x '=  / E / - ~ ' ' X  one obtains from equations (3.9) and 
(3.10) that ~ ' ( x ,  E ,  a)  = / E / - * / ' T * ( / E / - ~ ' * x ,  * 1, + - 3 / 4 ) ;  hence it suffices to show that 
the first three derivatives of T'(x ' ,  * 1, a / ~ l - ~ / ~ )  are uniformly bounded in x', --CO < x ' <  
CO. We do not give the proof in its entirety but rather illustrate the technique involved 
for the particular case of the first derivative of 

(3.15) 

with 

and X I +  +CO. We have that 

x ;I x'- 1 21 E j3i2 
- - - - exp[ - h (x ')I (1 dt  eh(') + I, eh(') dt  + dt  e '("), (3.17) 

6' -m x' -1 

with xb > 0 fixed so that h'( t )  3 1, for t 3 x&. 
The second integral on the RHS of this equation can be estimated by 

x'- 1 x'- 1 

d t  eh(f)S1x,  dth'( t)  eh(r'=exp[h(x'- l)]-exp[h(xb)]. (3.18) 
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The third integral on the RHS of equation (3.17) can be estimated using integration by 
parts, 

(3.19) 

Note that exp[h(t)] = exp[O(t3)]. Therefore inequalities (3.18), (3.19), combined with 
(3.17) show not only that dTo(x’)/dx’ is bounded as x‘-+co, but that it behaves like 
h’(x’)-’. The other cases are handled by the same methods. 

Lemma 3.3. For x E I R ( & ) ,  and n z= 2 one has 

(3.20) 

while for x E IL(e) ,  

where the ai are independent of E .  

Proof. Again one uses the scaling T’ (x ,  E ,  a)  = ~ E / - ~ / ~ T ~ ( x ’ ,  f 1, ( T / E ~ - ~ ’ ~ ) ,  x ’ =  ~ E I - ’ / ~ X .  
For x’+ - CO and using integration by parts, we have 

Integrating by parts repeatedly and expanding inverse powers of h’(x) appropriately 
generates equation (3.21). The case x‘+  +CO can be treated similarly after breaking up 
the integrals as in equation (3.17). 

The two preceding lemmas are the main bounds required for our estimate of 
( U  - Sc(ej)ro away from the right endpoint c ( E ) .  

Lemma 3.4. For x E [ - c ( E ) ,  c ( E ) - ~ ( E ~ ~ ~ ] ,  one has 

(n-sc(E,)70(~,  E , a ) =  1+o(l~1~/’~). (3.22) 

Proof. When x E I O ( & ) ,  the 6 integration in the definition of S, , , )  is unrestricted. Thus 

- sC(E))To(x) 

= 1 d p  (~)[T’(X) - T’ (X  + K X ~  + E + a[)] 
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= -1 d p  ( ~ ) ( ( K x ~ + E + ( T ~ ) - ( x ) + ~ ( K x ~ + F + ( T ~ )  dTo ,d2T0 - ( x )  
dx d x  

+ 0 i U 3 ) 0 ( i E i - 2 ) )  

= l + O ( ~ E ~ ’ ” ” )  (3.23) 

by the properties of p, equation (3.12), and the bound K X *  + E + U,$ = O(a) ,  valid for 
x E IO(&). 

When x E IR(&)\[c(&) - 2 ) ~ / ” ,  c ( s ) ]  or x E IL(&), then we consider ( U -  S,( , ) )  applied 
to each term in the asymptotic expansion (3.20) or (3.21). For example, 

= 1 + o(l&~”lO) (3.24) 

(use I d p  (515 = 0). 
Similarly one can show that for m 3 2 

( x )  = o(/&l‘m-’’’l” 1. (3.25) 

Taking n suitably large ( n  3 5) so that U - S,, ,)  applied to the remainders of (3.20) and 
(3.21) is O ( / E / ~ ’ ~ ~ )  or smaller, and applying the estimates (3.24) and (3.25), we obtain 
the result. 

At the right endpoint c ( E ) ,  the operator S,, ,)  introduces Dirichlet boundary 
conditions, because of the restriction in the integration, but G has Dirichlet boundary 
conditions at x = + W .  Therefore we cannot expect a bound as good as lemma 3.4, near 
c ( E ) .  However we shall make use later of the fact that this larger error k,  has small 
support and contributes an error O ( ~ E ( - ’ )  to our estimate of T , ( ~ ) ( x ) .  

Let k , ( x )  be the function defined by 

Lemma 3.5. The function k , ( x )  is O ( ( E ~ - ’ ) ,  

Proof. Since T O  is O(E-’) in the interval [ c ( E )  -2/&12’, c ( s ) ]  by lemma 3.3, and 
norm 1, the assertion follows. 

is of 

Lemmas (3.4) and (3.5) can be summarised as follows. 

Corollary 3.6. For x E [ - c ( e ) ,  c ( E ) ] ,  6 = &, C ( E )  = / E J ~ ” ~ ,  one has 

(U-S , ( , ) )T~(X)= 1 + O ( / E ) ~ ’ ~ ’ ) +  k , ( x ) ,  

with k , ( x )  = O(I$’) and supported in [ c ( E )  -21&12’, c ( E ) ] .  

(3.27) 
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To conclude the proof of theorem 3.1, we need the following additional lemma. 

Lemma 3.7. Let u , ( x )  be the solution to the equation 

( n - s c ( E ) ) U E ( x )  = v , ( x ) ,  (3.28) 

with v , ( x )  = O ( E ~ )  ( y  arbitrary of either sign) and supported in [ C ( E ) - ~ ) E / ~ ' ,  c(E)]. 
Then U ,  ( x )  = O(E Y ,  as well. 

Proof. Assume first 0 s v, (x) s 1. Then 

which implies that 

0 % ( x )  = s , " ( , ) U , ( x )  T c ( ~ ) ( X )  - ~ c ( c ~ - 2 ~ E ~ z 6 ( X )  = o(1)  
n 

since, again, the time required to cross from c ( E ) - ~ ~ E / ~ '  to C ( E )  can be estimated 
deterministically. The assertion of the lemma follows from the linearity of this 
inequality. 

(3.32) 

by corollary 3.6 and lemma 3.7. Equations (3.30), (3.31) and (3.32) and the fact that T O  
itself is O ( ~ E / - ' / ' )  imply that T ~ ( ~ ) -  T O  is O ( ~ E ) - ~ ' ~ + ~ / ~ ~  ) = O( 1 E This concludes the 
proof of the theorem. 

Remark. Theorem 3.1 also holds if O(x3) terms are included in the stochastic difference 
equation, equation (3.1) and the definition of S,, equation (3.5). For simplicity of the 
exposition, we have omitted these terms, although this strengthened form of the 
theorem is implicitly assumed in the proof of theorem 1.1 below. 
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We can now complete the proof of the theorem 1.1 in the Introduction. Keeping 
a / ~ l - ~ ’ ~  fixed and assuming p has no  atom at the origin, we have with T,(x) = T,(x, E ,  a )  
that 

lim I E ( ” 2 ~ ( ~ ,  a)  
F’O 

r a  

=lim 1 ~ 1 ’ ”  J dxp(x)T,(x) 
-U  E’O 

=lim(E11’2~u(-a, E , ~ ) J  dxp(x)  
-a E’O 

0 

4- h(&/”2( dX p(X)(T,(X) - T,(-U)) -t / dx p(X)(Ta(X) - T a ( - U ) )  
- C ( E )  

E ‘ 0  

(3.33) 

where C ( E )  = 

By theorem 3.1, T,(x) = T’(x)+ O ( E - ~ / ~ )  so that T ,  may be replaced by T O  in the 
above expression. Making this replacement, and using the scaling T O ( %  E ,  a )  = 
/ E / - ” ~ T ~ ( / E ~ - ~ ’ ~ x ,  i. 1, a ( ~ / - ~ ’ ~ ) ,  we have that the first limit on the RHS of (3.33) is simply 

0 

T’(-co, * 1, u / E ( - ~ / ~ )  I_, dxp(x).  (3.34) 

For x 6 - c ( E )  we have that T’(x)- T’(-u) = O ( / E / - ~ / ’ ) ,  and for x 3 c ( E ) ,  T”(x) = 
O ( ~ E - ~ ’ ’ ) ;  from this and the replacement of T~ by T O ,  it follows that 

\ 

Finally, again replacing T~ by T O ,  we have 

E’O d x p ( x ) [ r , ( X ) - ; , ( - a ) ~ + / o c ‘ E ’ d X p ( X ) T u ( X ) )  0 (3.36) 

by the bounded convergence theorem. Combining these results, we obtain the theorem 

lim / E / ~ ’ ~ T ( E ,  a )  = T O ( - ~ ,  f 1, u ( E / - ~ ’ ~ ) .  (3.37) 
& + O  

The double integral for T”(x) can be reduced to a single integral when x = --CO. Let 
u = s + t ,  v = t - s .  Then 

+CO, * I ,  ( + 1 ~ / - 3 / ~ )  

2 -_  - 
ar2 

d 4 V 3  
m 

- - T ” ~ K - ’ / ~  Jo dv v-1/2 exp[ - ( ~ i v ) ] .  (3.38) 

This observation accounts for the form of the integral, equation (1.4) 
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4. The reinjection 

When the orbit leaves the laminar region, i.e. when x, E [-a, a ]  but x ~ + ~  E‘ [-a, a ] ,  then 
a burst starts, and the point will wander (as a function of n )  in the complement of 
[-a, a ] ,  until it re-enters the laminar region again. It is impossible to describe in full 
generality the motion of the burst, and we are forced to make some plausibility 
assumptions about that motion. Otherwise, no prediction about the reinjection density 
could be made. As we have said before, the only thing we need to know to obtain 
scaling is the non-atomicity of p ( x )  at the origin. But even this we cannot prove. 

Consider the function f = fE in a neighbourhood of the contact point. We assume for 
simplicity that it is locally of the form shown in figure 4, 

Figure 4. Assumed local picture near the contact point. 

i.e. it is essentially quadratic down to a point -a’such that f(-a’) = a. The map has then 
a critical point in [-a’, a ]  and we assume it has none outside. Any orbit which enters 
[-a’, a ]  can only leave this interval at a. In particular, after the critical point has been 
encountered, a laminar period starts. 

We now discuss the motion in the complement of [-a’, a ] .  Since f has no other 
critical point in the complement of [-a’, a ]  and iff  has negative Schwarzian derivative 
(Collet and Eckmann 1980, 11.4), f is expanding in the complement of [-a’, a ]  in the 
sense that for every x &  [-a’, a ]  there is an n such that ldf”(x)/dxl> 1 provided 
fk(x) & [-a’, a ]  for k s n (Misiurewicz 1980). In particular it is not necessary to have 

I f /  l ~ - l , l , , ~ - a , , a ~  > 1 for this result to hold (otherwise we can choose n = 1, trivially). It is 
now well known that expansiveness is the main ingredient to prove the existence of 
absolutely continuous invariant measures, and our claim about the non-atomic and 
uniform injection to [-a’, a ]  is thus based on the following assumptions. 

(a) The expansion is strong and sufficiently uniform. 
(b) The start of a burst is at a random position. 
(c) U > 0 helps. 

We do not believe that counterexamples to these conjectures are impossible, by 
conspiracies of effects of the boundary of [- 1, 13, direct reinjections through accidental 
form of f, or perhaps even conspiracies with the noise terms. But typically these 
pathologies do not occur. 

If a is sufficiently small, a point injected in [-a’, a ]  will be ‘laminar’ for at least one 
iteration and will thus contribute to p(  .). We study p under the assumption that the 
reinjection is uniform into the interval [-a’, a ]  (not into [-a, a ] ) ,  as we have argued 
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above. It is easy to see that p ( x )  satisfies (for CT = 0) 

Similarly if the injection to [-a', a ]  has a non-atomic density, then the same is true for 
p. In addition, if the reinjection to [-a', a ]  is uniform, and f is known, then p is 
calculable. It usually looks as in figure 5, where q is given by the size of the last step, i.e. 
essentially f(-a) + a, and the singularity is of square root nature. This compares very 
well with the numerical evidence, cf figure 6. 

--_____----_-- 
~- -~ - . ~ - - 7 - - . ~ ~  - 0 0 i ~ 

1-010 I -0 05 0 00 0 05 0 Id 
- R  -a+q 

X 

Figure 5. Reinjection density p ( x )  calculated from uniform density in [-a', a ]  

-a X R 

Figure 6.  A typical result for r , ( x ) ,  p ( x )  ( E  = 1.5X cl = 1). 
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" I I I I I I I 
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U I I E l  3 i L  
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Figure 7. ( a )  Numerical results and universal scaling functions. (Upper curve U-, lower 
curve T,, AE = f 1.5 x lo-', 0 E = *8.O X 0 E = f 12 X lo-'.) ( b )  Numerical results 
and universal scaling function U, ( E  > O  enlarged). 
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5. Numerical tests 

We have performed extensive numerical tests of our scaling predictions, using the maps 
f e ( x )  defined byequation (1.2). In figure 1, we haveshown thegraph off,,,. Before we 
present the results of the calculations, we briefly indicate some of the considerations 
which have dictated our choice of parameters. As we have shown, the theory applies to 
all values of (T, = a / / ~ ) ~ ’ ~ ,  as soon as /el is sufficiently small. But there are obvious 
numerical problems of which we list the three most important ones. 

(1) The numerical precision is finite. In our case we used a word length of 32 
significant bits. If we require that (a) the region of quadratic contact is traversed by 
steps whose numerical size is close to the ideal quadratic case and (b) that the reinjection 
density p is numerically a smooth function, we see that 1 + e’ should be representable 
on the computer. 
This leads to le1 b 1.5 x lo-’. We have chosen le1 = 1.5 x 

(2) The computing time should not be excessive. This also leads to a bound 
~ e / b 1 . 5 x 1 O - ’ w h e n a l - l .  

(3) In order to be able to test the scaling even for the moderately large values of / E  1 
and r1 we have taken, we require a set-up for which p is almost constant in the region 
where I T : /  is large. This motivates our choice of f e  (almost all points have the same 
number of pre-images), the size of [-a, a ] ,  and the upper bound on / E / .  

f8 x lo-’, 1.2 x lop4, 
a / / ~ / ~ ’ ~  = 0.5, 0.75, 1, 3.5, 6, 8.5, 11, 14.5, 16, a = & (see figure 7). We use a random 
number generator with uniform distribution in [-$, $1. We divide the interval [-a, a ]  
into 200 bins, and count the number of reinjections into each bin, fixing a total of 
130 000 (e >0) and 40 000-130 000 (e <0) reinjections per run. For each injection, 
we note the time to leave [-a, a ]  on the right. This permits calculation of T(x), and 
var ~(x). A typical result is shown in figure 6. 

Finally, for each of the above choices, we compute IE/~’*R = leI1/’T(~, (T ) /Tb  = 
IE/*’~Y[-u, a ] / q ,  where T(E, a)  is the total time spent in the laminar region and 71, is, 
again, the expected total time spent in the burst region (cf § 2). Assuming that the 
expectation Tb is independent of E and a (actually we are assuming T b  is continuous in 
E, a at e = (T = 0), we see that the quantity /el’/*R should be proportional to 

8 x 1 . 2 ~  

Our final parameters are as follows: e = f 1.5 x 

To(-m, i 1; a1 = a / e p 4 )  

(cf equations (3.9) and (3.15), K = 1.75). 

with good agreement. 

(i being the sign of E )  

This function, along with the numerical results is shown in the figures 7 ( a )  and 7 ( b )  
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